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With the ultimate goal of devising effective absorbing boundary conditions (ABCs) for gen-
eral anisotropic media, we investigate the accuracy aspects of local ABCs designed for the
scalar anisotropic wave equation in the frequency domain (time harmonic case). The ABC
analyzed in this paper is the perfectly matched discrete layers (PMDL). PMDL is a simple
variant of perfectly matched layers (PML) and is equivalent to rational approximation-
based local ABCs. Specifically, we derive a sufficient condition for PMDL to accurately
absorb wave modes with outgoing group velocities and this condition turns out to be a
simple bound on the PMDL parameters. The reflection coefficient derived in this paper
clearly reveals that the PMDL absorption is based on group velocities, and not phase veloc-
ities, and hence a PMDL can be designed to correctly identify and accurately absorb all out-
going wave modes (even those with opposing signs of phase and group velocities). The
validity of the sufficient condition is demonstrated through a series of frequency domain
simulations. In part 2 of this paper [S. Savadatti, M.N. Guddati, Absorbing boundary condi-
tions for scalar waves in anisotropic media. Part 2: Time-dependent modeling, J. Comput.
Phys. (2010), doi:10.1016/j.jcp.2010.05.017], the accuracy condition presented here is
shown to govern both the well-posedness and accuracy aspects of PMDL designed for tran-
sient (time-dependent) modeling of scalar waves in anisotropic media.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

There exists a class of wave propagation problems defined on physically unbounded domains wherein the actual solution
is required only in a small bounded region (the interior) which is separated from the rest of the unbounded domain (the
exterior) by a computational boundary. Since the effect of the exterior is required only at the computational boundary,
the computational domain can be restricted to just the interior by specifying appropriate absorbing boundary conditions
(ABCs) that mimic the exterior by absorbing the outgoing waves at the computational boundary. In time harmonic modeling,
appropriateness refers mainly to accuracy – the closeness of the computational model (interior + ABC) solution to the exact
solution of the physical model (interior + exterior). In addition, computational efficiency is often critical for large scale sim-
ulations [1,2].

Exact ABCs are accurate by default, but their availability is restricted to simple exteriors with regular computational
boundaries. They also tend to be prohibitively expensive for large scale simulations. Approximate ABCs that contain nonlocal
spatial and temporal operators (global ABCs) are similarly unsuitable for large scale problems (in-spite of their accuracy) and
hence local ABCs are preferred [1,2]. The most popular local ABCs currently available are rational ABCs and perfectly matched
. All rights reserved.
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layers (PMLs) [3]. Rational ABCs approximate the exact stiffness (or associated dispersion relation) of an exterior with ra-
tional functions and were first introduced by Lindman [4]. Initial lower order implementations of Engquist and Majda’s se-
quence of rational ABCs [5,6], Bayliss and Turkel’s radiation BCs [7] and Higdon’s multidirectional ABCs [8] were followed
later by higher order formulations [9,10]. In one way or another, most of these formulations implemented higher order con-
tinued fraction expansions through the use of lower order functions of auxiliary variables and can be collectively called the
auxiliary variable formulations. The other popular local ABC, the PML, is a ‘special’ absorbing medium that uses complex
coordinate stretching to dampen out (or decay) propagating waves without creating artificial reflections at the computa-
tional boundary. The PML formulation was first introduced by Bérenger [11] and the complex coordinate stretching view-
point was provided by Chew et al. [12–14]. Originally presented in a split variable formulation, PMLs are now available in
unsplit forms along with variations like the conformal PML [15], complex frequency shifted PML (CFS-PML) [16], convolu-
tional PML (CPML) [17] and multiaxial PML (M-PML) [18].

Currently, both rational ABCs and PMLs are available for a wide variety of governing equations that include, among many
others, Maxwell’s, linearized Euler’s and elastodynamic equations. In comparison, neither ABC is absolutely superior to the
other in all respects; the choice between the two is usually determined by specialized requirements of different problems.
Rational ABCs tend to be more accurate than PML because the effect of the ABC parameters on solution accuracy is better
understood in their case. On the other hand, ABCs based on PML have proven to be more versatile by being easily extendible
to complicated exteriors [3]. The term complicated here implies material complications like heterogeneities and/or anisot-
ropy and geometrical complications like corners and conformal boundaries.

In-spite of their many differences, rational ABCs and PML have deep underlying links as shown by Asvadurov et al. [19].
This link can be used to view certain rational ABCs as particular versions of PML e.g. a rational ABC designed purely for prop-
agating waves can be viewed as an efficient form of PML with purely imaginary layer lengths. One such ABC is the perfectly
matched discrete layer (PMDL), formerly known as continued fraction ABC (CFABC) [20,21]. PMDL uses mid-point integrated
linear finite elements to approximate the stiffness of an unbounded domain without discretization error. The parameters of
this approximation are the element lengths, which can in general be complex. The details of the PMDL formulation can be
found in [22] and are summarized in Section 2.6. PMDL is known to possess several advantages over other local ABCs (see
Section 2.6). Specifically, PMDL combines the accuracy of rational ABCs along with the versatility of PML and is thus used for
the present study; moreover, the underlying links make the results of this paper applicable to other rational ABCs and PML in
general.

In order to be accurate, ABCs should absorb most of the outgoing wave modes and, in the absence of exterior sources, they
should not support incoming modes. While propagating waves are distinguished into incoming and outgoing wave modes
depending on their group velocity, rational ABCs and PML have both been traditionally formulated to absorb waves depend-
ing on their phase velocities. This dependence on phase velocities (instead of group velocities) does not affect simple media
where the phase and group velocities are always of the same sign (e.g. homogeneous isotropic acoustic medium) and hence
accuracy requirements of ABC formulations for simple media have turned out to be relatively easy to satisfy. Recognizing the
fact that many anisotropic and/or inhomogeneous media admit wave modes with opposing phase and group velocity direc-
tions, much recent research has been focused on developing techniques that result in accurate and stable ABCs for such med-
ia e.g. see [23–34] in reference to anisotropic or inhomogeneous (e.g. layered) electromagnetism, advective acoustics and
elastodynamics. In particular reference to a medium governed by the linearized Euler equations, the inability of traditional
PML to dampen outgoing wave modes in ducted domains in the presence of a mean flow was shown in [22] and attributed to
the existence of wave modes with opposite signs of phase and group velocities. Space–time transformations proposed in
[23,24] to address instabilities that were not at the time explicitly attributed to such modes, eventually became a remedy
to this problem. Similar space–time transformations were developed in subsequent works [26–34] to specifically address
the issue of opposing phase/group velocity signs in the case of acoustic, vorticity and entropy waves supported by the lin-
earized Euler equations with parallel and oblique mean flows.

The scalar waves present in an anisotropic acoustic medium whose principal material axis is tilted with respect to the
coordinate axis is one of the simple examples of a medium that allows wave modes with differing phase and group velocity
signs (see Sections 2.3, 2.4). This paper provides a sufficient condition for accuracy of PMDL for time harmonic modeling of
scalar waves in such an anisotropic medium. In essence, we prove that the parameters of PMDL (its layer lengths) need to
satisfy a simple bound to be able to absorb outgoing wave modes without allowing incoming ones; this effectively guaran-
tees accuracy. The criterion derived here, solely from the viewpoint of rational ABCs, bears similarity to the ones derived
through coordinate transformations of PML and other ABCs in [26–34], even though the PMDL we use for this purpose does
not require any coordinate transformation to be enforced. The absence of such transformations makes the PMDL ABC more
amenable to extensions involving layered media.

This paper is concerned with the accuracy issues of the frequency domain analysis of the continuous problem with a
straight computational boundary. Accuracy considerations here are limited to propagating waves only. As such, interior dis-
cretization errors, corners, curved computational boundaries and loss in accuracy due to neglecting the treatment of evanes-
cent waves are outside the scope of this paper. It should be noted that the above restrictions are imposed to make the
problem more tractable; they are, with the exception of curved boundaries, not due to any limitations of the PMDL formu-
lation. PMDLs, capable of handling both propagating and evanescent waves for scalar isotropic media have already been
implemented on domains with convex polygonal corners in [20]. As such, this paper can be considered as the necessary first
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step towards a complete PMDL implementation for anisotropic media. An analogous study for the transient case can be
found in Part 2 of this paper [36].

The outline of the rest of the paper is as follows. Section 2 contains preliminaries related to scalar anisotropic wave equa-
tion, followed by a discussion of the challenges inherent in designing accurate ABCs for such equations. A brief review of
currently available ABCs is also presented in the same section followed by the choice of a particular ABC – the PMDL – that
best suits the purposes of this paper. Section 3, which is the key to understanding the results of this paper, contains a detailed
discussion of the approximation properties of PMDL along with a derivation of the reflection coefficient and a description of
its interpolation points. A sufficient condition for accuracy of PMDL is derived in Section 4 by utilizing the reflection coeffi-
cient. Various numerical experiments are presented in Section 5 and finally, Section 6 contains a summary and conclusions.

2. Preliminaries

2.1. Model problem

The ultimate aim of this paper is to provide a practical ABC for the time-harmonic scalar anisotropic wave equation. To
this end, we choose the simplest possible boundary in two dimensions: a straight edge without corners. Fig. 1 (left) shows
such a boundary (x = 0) and the model problem shown therein consists of replacing the exact full-space by a left half-space
(interior) along with an ABC that simulates the effect of the right half-space (exterior). The interior and exterior in Fig. 1 (left)
are given by x < 0 and x > 0, respectively.

2.2. Scalar anisotropic media

We consider the time-harmonic scalar wave equation in two dimensions (x � y) given by,
Fig. 1.
Right: G
the elli
A
@2u
@x2 þ B

@2u
@y2 þ C

@2u
@x@y

þx2u ¼ 0; ð1Þ
where the three independent parameters A, B, C define the material properties of the medium and x is the temporal fre-
quency. Eq. (1), e.g. arises in the study of anti-plane shear waves in transversely isotropic elastic media where the parameters
A, B, C are functions of shear moduli, density and orientation of principal material axes of the medium. Similar scalar equa-
tions arise in the study of electromagnetism and advective acoustics.

For the sake of presentation, we Fourier transform (1) in y resulting in the reduced equation,
A
@2u
@x2 � Bk2

y uþ iCky
@u
@x
þx2u ¼ 0; ð2Þ
where the following dualities apply:
@

@y
$ iky and

@

@t
$ �ix: ð3Þ
For the sake of simplicity, the same notation u is used for both the field variable and its Fourier transform. In terms of indi-
vidual modes, (1) admits solutions of the form eikxxþikyy�ixt , where kx and ky are the horizontal and vertical wavenumbers,
respectively. The horizontal wavenumber kx is the root of the dispersion relation,
�Ak2
x � Bk2

y � Ckxky þx2 ¼ 0: ð4Þ
In terms of horizontal slowness (rx = kx/x) and vertical slowness (ry = ky/x), (4) can be written as,
Left: The model problem consists of replacing a full space by a left half-space and an efficient ABC that is accurate for a scalar anisotropic medium.
lobal coordinate and material axes along with a typical slowness diagram for ðrx;ryÞ 2 R. Note that the principal material axes (xM,yM) are shown on

pse just for reference.
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�Ar2
x � Br2

y � Crxry þ 1 ¼ 0: ð5Þ
Forðrx;ryÞ 2 R, (5) represents an ellipse in the slowness space that is completely defined by three independent parameters
representing its semiminor axis (a), semimajor axis (b) and angle of tilt (b) with respect to the x � y axis as shown in Fig. 1
(right). If we consider an anisotropic medium whose principal material axis (xM, yM) is tilted at an angle b with respect to the
coordinate axes (x, y) (see Fig. 1), the wave equation in xM � yM can be written as,
1
a2

@2u
@x2

M

þ 1

b2

@2u
@y2

M

þx2u ¼ 0; ð6Þ
where the parameters a, b represent the material properties along xM, yM directions, respectively, e.g. if the medium has shear

moduli lxM
;lyM

and density q, we have 1=a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lxM

=q
q

and 1=b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lyM

=q
q

(these are the wave velocities in xM � yM direc-

tions). Eq. (1) is just the wave Eq. (6) expressed in (x � y); simple coordinate rotations show that:
A ¼ cos b
a

� �2

þ sin b
b

� �2

; B ¼ cos b
b

� �2

þ sin b
a

� �2

; C ¼ sin 2b
1
a2 �

1

b2

� �
: ð7Þ
For later reference, we need the traction on the computational boundary (x = 0). For the medium defined by (6), the tractions
in xM � yM are (a�2)@/@xM, (b�2)@ /@yM. These can be transformed into the tractions in x � y through the usual second order
tensor transformations to get,
Tx : A
@u
@x
þ ðC=2Þ @u

@y
; Ty : B

@u
@y
þ ðC=2Þ @u

@x
; ð8Þ
where Tx, Ty are the tractions on surfaces perpendicular to x, y axes, respectively. Furthermore, without loss of generality, we
consider the following with the direction of b being counter clockwise positive:
b P a > 0; �p
2
6 b <

p
2
: ð9Þ
Eqs. (7) and (9) together ensure that
A > 0; B > 0; 4AB� C2 > 0: ð10Þ
Variations of the three material properties A, B, C result in three kinds of slowness diagrams representing isotropic, untilted
anisotropic and tilted anisotropic media as shown in Fig. 2. Since the solutions of (1) are of the form eikxxþikyy�ixt , a wave mode
can be defined as the solution for fixed ky, x, or equivalently, fixed ry. The behavior of such a mode in x direction is deter-
mined by the value of kx which is the root of the dispersion relation (4).

2.3. Exact ABC

For a given mode i.e. for a fixed ry, (5) allows as its solutions, the two rx given by,
rx ¼
�Cry �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4A� ð4AB� C2Þr2

y

q
2A

ð11Þ
Representative slowness diagrams for the three kinds of media governed by a scalar wave equation. Only slowness diagram for propagating waves is
i.e. ðrx;ryÞ 2 R. Note that the principal material axes (xM,yM) are shown on the ellipse just for reference.
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Eq. (11) allows both propagating ðrx 2 RÞ and evanescent modes ðrx R RÞ. Each propagating wave mode is associated with a
phase velocity (cpx) and a group velocity (cgx) in the x-direction defined by:
cpx ¼
x
kx
¼ 1

rx
;

cgx ¼
@x
@kx
¼ Akx þ Cky=2

x
¼ Arx þ

Cry

2
:

ð12Þ
It is known that while cpx represents the apparent velocity of propagation, cgx represents the true velocity of energy propa-
gation in the x-direction. For the rest of the paper, the terms ‘phase velocity’ and ‘group velocity’ will refer to cpx and cgx,
respectively with the understanding that these velocities are always in the x direction. The propagating solutions of (11)
can be classified in terms of cgx as rightward and leftward propagating waves; their horizontal slownesses are given by,
rx ¼
�Cry þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4A� ð4AB� C2Þr2

y

q
2A

: cgx P 0 ðrightward propagatingÞ; ð13Þ

rx ¼
�Cry �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4A� ð4AB� C2Þr2

y

q
2A

: cgx 6 0 ðleftward propagatingÞ: ð14Þ
Graphically, the propagating wave modes of (11) are represented by the ellipses in Fig. 3, where the rightward and leftward
propagating waves of (13) and (14) are denoted by the solid and broken lines, respectively of the left ellipse in Fig. 3.

An exact right half-space, in the absence of any sources within it, admits waves that either propagate to the right (cgx P 0)
or decay with increasing x (Im(rx) > 0). The equation of an ABC that exactly simulates a right half-space is thus given by,
rx ¼
�Cry þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4A� ð4AB� C2Þr2

y

q
2A

: Exact ABC ðslowness formÞ; ð15Þ
where the square root is defined by the standard branch cut and ðry;xÞ 2 R. The slowness diagram of an exact ABC for prop-
agating waves ðrx 2 RÞ will thus be the solid portion of the left ellipse in Fig. 3.

2.4. Approximate ABCs: need and challenges

It is known that, on inverse Fourier transforming, the square root in (15) results in pseudo differential operators that are
global in both space and time [5]. An exact ABC is thus computationally expensive and hence ABCs that approximate (15),
but lead to local operators are preferred.

Since the approximate ABC is supposed to represent the equation of an exact ABC (15) in some sense, it should try to
capture, as accurately as possible, the solid part of the ellipse in Fig. 3 (left) i.e. the non-negative group velocity branch of
the ellipse. An obvious sign of inaccuracy is the capturing of the negative group velocity branch. However, none of the
approximate ABCs, neither rational ABCs nor PML, were developed with the explicit purpose of capturing positive group
velocities. While the rational approximation of the square root operator employed by Engquist and Majda [5,6] ends up
capturing the correct group velocities for scalar anisotropic waves, to the best of our knowledge it was never really imple-
mented for the anisotropic case and hence it is not apparent that it would capture the right group velocities in general.
Moreover, Engquist and Majda’s ABCs are limited to scalar wave equations and robust extensions to vector systems may
not be possible. A straightforward implementation of Higdon’s multidirectional ABCs [8], as well as the complex coordi-
nate stretching of PML in the direction of unboundedness can be shown to capture only positive phase velocities (not
group velocities). This hardly poses a problem for the cases of isotropic or untilted anisotropic media (see Fig. 2) because
Fig. 3. A typical slowness diagram for tilted anisotropic media with the regions of positive group and phase velocities clearly demarcated.
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every point on these slowness diagrams has phase and group velocities of the same sign. This can easily be inferred from
(4), (7) and (12); because C = 0 for untilted anisoptropy and hence cgx and cpx have the same sign. In fact, approximate
ABCs that are well-posed, accurate and efficient for isotropic and untilted anisotropic media have existed for more than
two decades, e.g. [5].

Consider however the case of tilted anisotropy. Fig. 3 clearly shows that there are portions on the slowness diagram
which have group and phase velocities of differing signs. This implies that a typical approximate ABC (developed originally
for isotropic or untilted anisotropic media and based on phase velocities) will try to capture the positive phase velocity
branch (solid portion of the right ellipse in Fig. 3) instead of the positive group velocity branch (solid portion of the left
ellipse in Fig. 3). Hence, such an approximate ABC is clearly inaccurate for tilted anisotropic media because it will end up
capturing portions of the slowness diagram with negative group velocities. To demonstrate, frequency domain simulations
transformed back in time are presented in Fig. 4. The figure on the left shows the wavefront in a tilted anisotropic acoustic
medium of a source at the center of the domain. The wavefronts of the same source in domains half the size (dotted square)
with ABCs applied at the truncated boundaries are shown in the two figures on the top and bottom right of Fig. 4. The two
cases correspond to the same ABC with two different choices of the ABC parameters, both designed to capture positive phase
velocities. The obvious inaccuracies due to reflections in the figure on the bottom right demonstrate the ineffectiveness of
ABCs designed with reference to positive phase velocities.
2.5. Approximate ABCs: choices

As mentioned in the introduction, PML and rational ABCs are the most popular local ABCs; though seemingly disparate,
recent works have demonstrated underlying links between the two. It was shown in [19] that optimal PML for propagating
wave modes can be obtained by purely imaginary stretching and as such PML discretization is algebraically equivalent to
rational ABCs obtained by approximating the square root operator. Hence, in the purely imaginary stretching case, rational
ABCs can also be viewed as PML. The advantage of this viewpoint is that ABCs can now be developed to inherit the accuracy
of rational ABCs while maintaining the versatility of PML. One such local ABC is the arbitrarily wide angle wave equation
(AWWE) based CFABC first introduced in [37], with the underlying theory presented in [38] and linked to PML in [20]. These
CFABCs can be viewed as particularly efficient discrete versions of PML where the ‘perfect matching’ property of continuous
PML is preserved even after discretization. This property of CFABCs later prompted the more appropriate term: ‘Perfectly
Matched Discrete Layers’ (PMDLs) (see [22]).

PMDL forms the basis of this study because of their attractive properties (see [22,38]): (a) Generality – The PMDL formu-
lation is applicable to general second order hyperbolic systems including (but not limited to) media governed by Maxwell’s,
linearized Euler’s and elastodynamic equations, (b) Completeness – PMDL is capable of acting as an ABC for both propagating
and evanescent waves, (c) Accuracy – PMDL can be implemented to an arbitrarily high degree of accuracy without a substan-
tial loss in efficiency, (d) Efficiency – The PMDL formulation is local and is computationally efficient, (e) Transparent – The
PMDL lends itself to explicit error calculation (the truncation error, the only kind of error in PMDL, can be calculated a priori
for each wave mode), (f) Versatility – PMDL can be viewed as an optimal PML and hence it inherits the versatility of PML with
respect to being extendible to complicated boundary geometries, and (g) Ease of Use – The PMDL formulation was derived
within the finite element framework and can hence be directly incorporated into existing finite element or finite difference
codes. Other ABCs that exhibit many of the above properties do exist. For example, although developed through a different,
independent viewpoint, the auxiliary variable Hagstrom–Warburton formulation [39] can be shown to be equivalent to
PMDL and exhibits most of the above properties. However, the derivation of Hagstrom–Warburton formulation is currently
limited to the scalar case and as such it lacks the generality of PMDL.
Fig. 4. Left: Wavefront in a tilted anisotropic acoustic medium of a source at the center of a domain. Right: Wavefronts of the same source in a truncated
domain (dotted square) with ABCs designed to absorb positive phase velocities. The only difference in the two figures on the right is the choice of their ABC
parameters.
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Notwithstanding the above merits, effectiveness of PMDL is not assured, especially for general anisotropic and heteroge-
neous exteriors. The subsequent discussion is limited to propagating wave modes only, i.e. we are interested in properties of
ABCs that only approximate the real part of (15). Even though neglecting evanescent modes ðrx R RÞ is expected to affect the
long term accuracy of the solution in the interior [40], and even though PMDL can handle evanescent wave modes, we con-
sider this paper to be a preliminary work on rational ABCs for tilted anisotropic media and so restrict ourselves to propagat-
ing wave modes.

2.6. PMDL formulation

PMDL derivation can best be presented in (x, ry, x) space with the governing equation given by (2). Since we wish to re-
place the right half-space in Fig. 1 by an ABC, consider just the right half-space (0 6 x <1) with a stiffness (or Dirichlet to
Neumann map) given by Kexact. The traction F0 on the left boundary (x = 0) and the field variable there (u0), are related by:
Fig. 5.
directio
F0 ¼ Kexactu0 : Exact ABC ðstiffness formÞ: ð16Þ
Eq. (16) can be viewed as the stiffness form of the equation of an exact ABC as compared to the slowness form of (15). The
traction for a tilted anisotropic medium governed by (2) is given by (8) and on the left boundary (x = 0), the traction Tx can be
written as,
F0 ¼ � A
@

@x
þ C

2
ixry

� �
u
����
x¼0
: ð17Þ
For a mode u ¼ eixðrxxþryy�tÞ, (16) with (17) leads to
Kexact ¼ �ix Arx þ
C
2
ry

� �
: ð18Þ
In the absence of sources inside the right half-space, the horizontal slowness is given by (15). This allows us to write the
exact stiffness (18) as
Kexact ¼
�ix

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4A� ð4AB� C2Þr2

y

q
2

: ð19Þ
PMDL approximates the exact stiffness Kexact in (19) by an approximate stiffness Kn to obtain an approximate ABC for Fig. 1
that mimics the absorption behavior of the right half-space; the PMDL equation approximating (16) takes the form,
F0 ¼ Knu0 : Approx ABCðstiffness formÞ ð20Þ
where the approximate stiffness Kn is obtained by using n mid-point integrated finite elements to approximate the stiffness
of the right half-space at x = 0. The rationale behind this approximation can be summarized in the following four steps which
are graphically depicted in Figs. 5 and 6.

[STEP 1] involves splitting the half-space [0,1) into a finite element [0,L1] and another half-space [L1,1), with the finite
element using linear shape functions to represent the displacement in [0,L1]. As expected, the stiffness of the finite ele-
ment [0,L1] plus half-space [L1,1) model can only approximate Kexact because of the error inherent in the finite element
discretization.
[STEP 2] which is the key to PMDL development, involves the elimination of the finite element discretization error with
respect to the half-space stiffness at x = 0. This is achieved by simply using mid-point integration to approximately eval-
Steps 1 and 2 of PMDL derivation: Replacing a half-space by a linear finite element and another half-space. The use of mid-point integration in the x
n eliminates the discretization error.



Fig. 6. Steps 3 and 4 of PMDL derivation: Replacing the half-space by an infinite number of mid-point integrated linear finite elements produces the exact
stiffness at x = 0. Truncating the number of layers to n with a Dirichlet boundary at the end results in an implementable but approximate ABC; this is the n-
layer PMDL.

S. Savadatti, M.N. Guddati / Journal of Computational Physics 229 (2010) 6696–6714 6703
uate the finite element stiffness matrix (see [20,21,38]). The stiffness of this mid-point integrated linear finite element is
denoted by Sj (with j = 1) with rx1 = 2i/xL1:

Sj ¼
S11

j S12
j

S21
j S22

j

" #
¼ �ixrxjA

2
1 �1
�1 1

� �
þ iCxry

2
0 �1
1 0

� �
þ

ix Br2
y � 1

� 	
2rxj

1 1
1 1

� �
forðj ¼ 1 . . . nÞ ð21Þ

Note that the mid-point integrated linear finite element [0,L1] plus half-space [L1,1) model represents the exact stiffness
of the original half-space [0,1) at x = 0 irrespective of the element length Lj; it can be arbitrarily large and is not even re-
stricted to real numbers.
[STEP 3] involves applying the above splitting recursively to discretize the original half-space into an infinite number of
finite element layers, [0,L1], [L1,L1 + L2], . . . as shown in Fig. 6. Such splitting does not introduce any further discretization
error because the mid-point integration in step 2 eliminates all discretization errors in the half-space stiffness. Hence, this
discretized half-space containing an infinite number of layers is exact as far as the stiffness at x = 0 (Kexact) is concerned.
[STEP 4] involves limiting the number of layers for computational tractability. The number of layers is limited to n with a
Dirichlet boundary condition un = 0 applied at x ¼

P
Lj as shown in Fig. 6. This results in a n-layer finite element model of

the half-space whose stiffness Kn can be written in the continued fraction form:

Kn ¼ S11
1 �

S12
1 S21

1

S22
1 þ S11

2 �
S12

2 S21
2

S22
2 þ S11

3 �
� � �

S12
n�1S21

n�1

S22
n�1þS11

n

:

ð22Þ

The above expression is obtained by assembling the n element matrices Sj (j = 1. . .n) in (21) and eliminating the auxiliary
variables u1,. . .un�1. Note that the truncation to n layers introduces errors, which makes Kn an approximation of Kexact.
Hence (20) is the equation of an approximate ABC which will be referred to as the n-layer PMDL.

In (21), rxj with (j = 1. . .n) are termed the n parameters of PMDL. The finite element layer lengths Lj are related to these
parameters as Lj = 2i/xrxj. This particular choice of frequency dependent imaginary lengths ensures that the boundary con-
dition, when transformed back into the time domain, will have all real-valued coefficients, thus avoiding any complex arith-
metic [38]. Comparing (20) to (16) we see that PMDL approximates the exact stiffness (Kn � Kexact) and the properties of this
approximation are dictated solely by the choice of the n arbitrary parameters rxj. A detailed derivation of the formulation
presented in this subsection is given in [38]. For later use, the following identities can be easily derived from (19) and (21):
S11
j ¼ S22

j ;

K2
exact ¼ S11

j S22
j � S12

j S21
j :

ð23Þ
2.7. Objective

To restate, the objective of this paper is to develop an accurate PMDL for scalar wave propagation in tilted anisotropic
media. Specifically, we will derive criteria for the parameters rxj that will make the n-layer PMDL an accurate ABC for the
model problem in Fig. 1.
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3. PMDL: Approximation properties

In this section, we closely examine the approximation properties of PMDL for tilted anisotropic media. This section is key
to understanding the rest of the paper.

3.1. General approximation properties

The PMDL presented in the previous section is a special form of rational ABCs. Rational ABCs use rational functions Pr,s of
the form,
Pr;sðryÞ ¼
prðryÞ
qsðryÞ

; ð24Þ
to approximate the irrational square root operator present in the definition of an exact ABC (15). Here pr and qs are polyno-
mials of exact degrees r P 0 and s P 0, respectively with no common zeros. In the case of isotropic and untilted anisotropic
media, for a particular choice of r,s and the r + s + 2 coefficients of pr and qs, the dispersion relation of every rational ABC can
be represented as rx = Pr,s(ry). This dispersion relation can be viewed as an approximation of the dispersion relation of the
exact ABC (15). Using C = 0 in (15), we get the exact ABC for isotropic and untilted anisotropic media as
rx ¼ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Að1� Br2

yÞ
q

=A. Hence, rational ABCs for isotropic and untilted anisotropic media approximate the irrational square
root by a rational function i.e. Pr;sðryÞ � þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Að1� Br2

yÞ
q

=A.

PMDL approximates the exact stiffness Kexact in (16) by Kn. The continued fraction form of Kn in (22) can also be expressed
as
Kn ¼ �ixP2n;2n�2ðryÞ: ð25Þ
Using Kn � Kexact, (19) and (25) we can see that the n-layer PMDL is equivalent to a rational approximation of the positive
square root operator,
P2n;2n�2ðryÞ �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4A� ð4AB� C2Þr2

y

q
2

: ð26Þ
The rational approximation of (26) can be used in the slowness form of the exact ABC in (15) to obtain the slowness form of
the n-layer PMDL as
rx ¼
�Cry=2þ P2n;2n�2ðryÞ

A
: Approx ABCðslowness formÞ: ð27Þ
As far as this paper is concerned, we are interested in modeling propagating waves only. When the parameters of n-layer
PMDL rxj are chosen to be real, P2n,2n�2 becomes a real rational function and (27) approximates the real part of (15) i.e.
(27) treats propagating waves only. Hence we restrict ourselves to rxj 2 R. A few points need to be clarified here. (a) It should
be noted that a choice of rxj 2 R is in no way due to a limitation of the PMDL itself. It has already been shown that PMDL
models propagating waves for purely real rxj, evanescent waves for purely imaginary rxj and both propagating and evanes-
cent waves for complex rxj [38]. (b) Choosing purely real rxj also implies choosing purely imaginary finite element layer
lengths since we assumed Lj = 2i/xrxj. This should not pose any problem because, as mentioned in Step 2 of Section 2.6,
the elimination of discretization error due to mid-point integration is independent of Lj. (c) Since Lj can be real, imaginary
or complex, the domain x 2 ð0;

P
LjÞ of the n-layer PMDL can, in general, be complex; this complex domain in no way rep-

resents or approximates the physical right half-space that forms the exterior [0,1). However, the stiffness of this n-layer
PMDL at x = 0 is an approximation of the stiffness of the right half-space i.e. Kn � Kexact.

3.2. Reflection coefficient

The reflection coefficient is defined as the ratio of amplitudes of the reflected wave to the incident wave and the approx-
imation properties of an ABC designed for propagating waves can be studied through the magnitude of its reflection coeffi-
cient. The reflection coefficient Rn for a n-layer PMDL can be derived by considering individual propagating wave modes with
a fixed ðry;xÞ 2 R. Since we are interested in propagating wave modes only, ry is chosen so as to yield real rx. The dispersion
relation (5) admits two rx for a given ry. These two modes (13) and (14) have group velocities that are negative of each other
and can be categorized into rightward and leftward propagating waves. For the left half-space with an approximate ABC at
x = 0, we can consider the rightward propagating wave as the incident wave on the boundary x = 0 and the leftward prop-
agating wave as the reflected wave. Using the definition of reflection coefficient, the total wave field in the left half-space
can be represented by u ¼ eixðrxxþryy�tÞ þ Rneixð~rxxþryy�tÞ where rx and ~rx are the two roots given by (13) and (14), respectively.
Since rx is the slowness in the incident wave mode eixðrxxþryy�tÞ, it is the root with the non-negative group velocity i.e.

cgx ¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4A� ð4AB� C2Þr2

y

q
=2 P 0. The other root can be written as ~rx ¼ �ðrx þ Cry=AÞ and the reflected wave mode

eixð~rxxþryy�tÞ has non-positive group velocity. The reflection coefficient derivation will not need a precise classification of zero
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group velocity modes as either incident or reflected modes; hence the obvious overlap between rightward and leftward
propagating modes for cgx = 0 can be neglected. Substituting u into the equation defining a n-layer PMDL (20) and using
(17), we get:
x �iAðrx þ Rn ~rxÞ � i
C
2
ð1þ RnÞry

� �
eixðryy�tÞ ¼ Knu0: ð28Þ
Since the displacement u0 ¼ ujx¼0 ¼ ð1þ RnÞeixðryy�tÞ , (28) becomes,
ð1þ RnÞKn ¼ �ixAðrx þ Rn ~rxÞ � ix
C
2
ð1þ RnÞry: ð29Þ
We can solve for the reflection coefficient Rn in (29) and write it either in terms of slowness or stiffness. Using
~rx ¼ �ðrx þ Cry=AÞ, (13) and (25), (29) can be written in slowness form as,
Rn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4A� ð4AB� C2Þr2

y

q
=2� P2n;2n�2ðryÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4A� ð4AB� C2Þr2
y

q
=2þ P2n;2n�2ðryÞ

0B@
1CA : Reflection coefficientðslowness formÞ: ð30Þ
On the other hand, using ~rx ¼ �ðrx þ Cry=AÞ and (18), (29) can be written in stiffness form as,
Rn ¼
Kexact � Kn

Kexact þ Kn

� �
: Reflection coefficientðstiffness formÞ: ð31Þ
Expressions (30) and (31) are of course equivalent to each other considering (19) and (25). From (22) and (23) we have
Kn ¼ K2

exact= S11
n þ Kn�1

� 	
. This allows us to write (31) in the recursive form,
Rn ¼
S11

n � Kexact

S11
n þ Kexact

 !
Rn�1: ð32Þ
Since the reflection coefficient for the 0-layer PMDL (the Dirichlet boundary in Fig. 6) is R0 = � 1, the magnitude of the reflec-
tion coefficient turns out to be (in stiffness form),
jRnj ¼
Yn

j¼1

S11
j � Kexact

S11
j þ Kexact

 !�����
�����: ð33Þ
By utilizing (18), (19) and (23), the reflection coefficient of (33) can be also written in slowness form as:
jRnj ¼
Yn

j¼1

Arx � Arxj

Arx þ Arxj

� �
A rx � rxj

 �

þ Cry

A rx þ rxj

 �

þ Cry

 !�����
�����: ð34Þ
An exact ABC produces no reflections and hence its reflection coefficient is zero for all wave modes (R � 0). The n-layer
PMDL results in Rn = 0 for only some (not all) modes and these are termed the reference modes. The horizontal slownesses
of the reference modes are termed the reference slownesses. By setting Rn = 0 in (34), the reference slownesses can be seen
to be
rx ¼ rxj;rxj � ðC=AÞry: ð35Þ
The choice of the notation rxj for the parameters of the PMDL is now apparent because they represent some of the horizontal
slownesses for which the PMDL is exact. The form of the reflection coefficient in (34) can be specialized for isotropic media
by substituting C = 0 and compared to the reflection coefficient derived in [21] for isotropic acoustics.

Since we are interested in the ability of PMDL to absorb wave modes with non-negative group velocities, we rearrange
(34) to get
jRnj ¼
Yn

j¼1

Arx � Arxj

Aðrx þ rxjÞ þ Cry

� �
A rx � rxj

 �

þ Cry

Arx þ Arxj

� ������
����� ¼ Yn

j¼1

cgx � Arxj þ ðC=2Þry

 �

cgx þ ðArxj þ ðC=2ÞryÞ

� �
cgx � ðArxj � ðC=2ÞryÞ
cgx þ ðArxj � ðC=2ÞryÞ

� ������
�����: ð36Þ
From (12), (18) and (19) we have cgx ¼ Arx þ ðC=2Þry ¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4A� ð4AB� C2Þr2

y

q
=2 P 0. Hence the group velocity in (36) is

non-negative, i.e. it is the group velocity of the incident wave mode propagating rightward (cgx P 0).
Eq. (36) shows that for a given ry 2 R, Rn = 0 for all modes with group velocities cgx = Arxj + (C/2)ry and cgx = Arxj � (C/

2)ry. Hence these are referred to as the reference group velocities corresponding to the reference slownesses in (35). Noting
that the PMDL is exact for the reference modes, the reference slownesses (35) should satisfy the exact dispersion relation (5).
Substituting (35) separately in (5), we get the following reference group velocities:
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Arxj þ ðC=2Þry ¼ Arxj þ ðC=2Þ
�Crxj �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4B� ð4AB� C2Þr2

xj

q
2B

0@ 1A;
Arxj � ðC=2Þry ¼ Arxj � ðC=2Þ

Crxj �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4B� ð4AB� C2Þr2

xj

q
2B

0@ 1A:
ð37Þ
Note that either the positive or the negative square root should be chosen in both the equations of (37) and either choice
leads to the same pair of group velocities. By defining,
cj ¼ Arxj þ ðC=2Þ
�Crxj þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4B� ð4AB� C2Þr2

xj

q
2B

0@ 1A;
�cj ¼ Arxj þ ðC=2Þ

�Crxj �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4B� ð4AB� C2Þr2

xj

q
2B

0@ 1A;
ð38Þ
we can rewrite (36) using (37) and (38) as:
jRnj ¼
Yn

j¼1

cgx � cj

cgx þ cj

� �
cgx � �cj

cgx þ �cj

� ������
�����ðcgx P 0Þ : Reflection coefficientðgroup velocity formÞ: ð39Þ
For any given parameter rxj, the PMDL is exact (Rn = 0) for wave modes with two different group velocities cj, �cj given by (38)
and hence these are the reference group velocities. The requirement cgx P 0 in (39) is just a reminder that the cgx in (39) is
the group velocity of the incident wave mode that is propagating rightward.

3.3. Points of interpolation

Since the n-layer PMDL is exact for the reference modes, the vertical and horizontal slowness pairs of these modes are the
points at which (27) interpolates (11). The reference horizontal slownesses given by (35) can be substituted in (11) to get the
reference vertical slownesses ry ¼ �ryj;��ryj, where,
ryj ¼
�Crxj þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4B� ð4AB� C2Þr2

xj

q
2B

;

�ryj ¼
�Crxj �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4B� ð4AB� C2Þr2

xj

q
2B

:

ð40Þ
For a given parameter rxj, there exist two reference group velocities (cj, �cjÞ, and for each reference group velocity, there exist
two reference wave modes. Hence there are four reference modes for every rxj; these four modes (with their group veloc-
ities) are given by:
eixðrxjxþryjy�tÞ

eixððrxjþðC=AÞryjÞx�ryjy�tÞ

)
cgx ¼ cj;

eixðrxjxþ�ryjy�tÞ

eixððrxjþðC=AÞ�ryjÞx��ryjy�tÞ

9>=>; cgx ¼ �cj:

ð41Þ
Hence, for every rxj, the PMDL slowness (27) interpolates the exact slowness (11) at the four points given by (ryj, rxj), (�ryj,
rxj + (C/A)ryj), ð�ryj;rxjÞ and ð��ryj;rxj þ ðC=AÞ�ryjÞ. It should be noted that these four points of interpolation need not neces-
sarily be distinct; For C – 0 (tilted anisotropy of Fig. 2), there are indeed four distinct points of interpolation when

rxj–�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4B=ð4AB� C2Þ

q
but only two distinct points of interpolation (each with multiplicity 2) when

rxj ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4B=ð4AB� C2Þ

q
. Similarly for C = 0 (isotropy and untilted anisotropy of Fig. 2), there are two distinct points of inter-

polation (each with multiplicity 2) when rxj–�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4B=ð4AB� C2Þ

q
and just one point of interpolation (with a multiplicity of 4)

when rxj ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4B=ð4AB� C2Þ

q
. However, for every choice of rxj, there are four points of interpolation counted with multiplic-

ity. Since a n-layer PMDL has n parameters (rxj with j = 1. . .n), it has 4n points of interpolation in all counted with multiplic-
ity. These 4n points for a single layer PMDL (n = 1) are graphically represented on a typical slowness curve in Fig. 7 (left).

A few observations about interpolation points should be kept in mind: (a) A choice of real parameters rxj 2 R may lead to
complex ryj and �ryj. This means that the interpolation points need not be real and hence may not be depicted on a typical
slowness diagram which is a plot of ðry;rxÞ 2 R. However, (27) still interpolates (11), albeit now in complex space



Fig. 7. Left: The four points of at which a 1 layer PMDL dispersion relation (approximate) matches the exact dispersion relation are the four modes for which
the 1 layer PMDL is exact. Right: The two parameters rxj that result in a particular reference group velocity of cj (or �cj) for a 1 layer PMDL.
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ðry;rxÞ 2 C. (b) We can choose the parameters rxj arbitrarily but we cannot choose the two related reference group veloc-
ities (cj, �cjÞ independent of one another. Of the three – rxj, cj, �cj – only one can be chosen. A choice of rxj uniquely determines
cj and �cj from (38) and this is the only choice that we truly have. For theoretical purposes however, it may appear advanta-
geous to be able to design a PMDL that is exact for a given group velocity. This is equivalent to choosing cj (or �cjÞ. A choice of cj

(or �cjÞ however can be obtained from two different rxj in general and this in turn results in two different �cj (or cj) – this is
shown in Fig. 7. Because of this ambiguity, we focus on rxj as the parameters of the PMDL. Note that this is true only for tilted
anisotropy; in the untilted anisotropic or isotropic case, there is a unique parameter for a given group velocity.

4. Accuracy

4.1. Accuracy criterion

The ideal accuracy criterion for a n-layer PMDL is Rn (cgx) = 0 for all cgx P 0. We use Rn (cgx) to emphasize the fact that the
reflection coefficient is a function of the group velocity of the incident wave mode (see (39)). The reflection coefficient of a n-
layer PMDL (39) is zero for exactly 2n group velocities given by the reference group velocities cj, �cj (j = 1. . .n). Hence, the ideal
of Rn (cgx) = 0 for all cgx P 0 can never be realized in practice by a n-layer PMDL with a finite n. This necessitates the formu-
lation of an attainable accuracy criterion.

Accuracy criterion: An n-layer PMDL is considered accurate if, by increasing the number of layers n, the magnitude of its
reflection coefficient can be made arbitrarily small for every rightward propagating wave mode, i.e.
lim
n!1
jRnðcgxÞj ¼ 0 8 cgx P 0 : Accuracy criterion: ð42Þ
To be precise (42) is a convergence criterion that is necessary for a PMDL to act as a meaningful ABC for rightward propagat-
ing waves. If the rate of convergence is slow, the number of PMDL layers required for sufficient accuracy might render the
ABC inefficient. The usage of the term accuracy instead of the term convergence is mainly for the sake of compatibility with
existing ABC literature.

4.2. Sufficient condition for accuracy

In order to facilitate the derivation of conditions under which a PMDL is accurate, we restate the accuracy criterion and
reformulate the reflection coefficient. The accuracy criterion (42), written separately for zero and positive group velocities is:
lim
n!1
jRnðcgxÞj ¼ 0 for cgx ¼ 0; ð43Þ

lim
n!1
jRnðcgxÞj ¼ 0 8 cgx > 0: ð44Þ
The reflection coefficient is given by (39) and can be expressed as:
jRnj ¼
Yn

j¼1

Rnj

�����
����� ¼ Yn

j¼1

rj�rj

�����
�����; ð45Þ
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where,
Rnj ¼ rj�rj; rj ¼
cgx � cj

cgx þ cj

� �
; �rj ¼

cgx � �cj

cgx þ �cj

� �
for cgx P 0; j ¼ 1 . . . n: ð46Þ
The accuracy criteria (43) and (44) can be satisfied by choosing either zero, negative or positive reference group velocities
ðcj; �cjÞ in (45) and (46).

Consider (43) with various (zero, negative and positive) reference group velocities. Criterion (43) cannot be satisfied if all
reference group velocities are non-zero because in this case, jRnj = 1 and hence limn?1jRnj = 1 for cgx = 0. One way to ensure
accuracy for cgx = 0 is to have at least one zero reference group velocity. This makes the n-layer PMDL exact for zero group
velocity modes and hence by definition jRnj = 0 for cgx = 0 (which satisfies (43)). In other words, the PMDL will allow wave
modes with cgx = 0 to exist in the left half-space (interior). While this is perfectly acceptable from the viewpoint of accuracy
– an exact right half-space that the PMDL is trying to emulate does allow zero group velocity modes in the interior – we do
not allow zero reference group velocity because of the following reasons. Since untilted anisotropy (and isotropy) are special
cases of tilted anisotropy, we expect the conclusions presented here to hold for these cases as well i.e. for the case C = 0 in
Fig. 2. But from (38), it is clear that for C = 0, a zero reference group velocity translates to rxj = 0 which in turn requires Lj =1.
This is not practically feasible and we violate (43) and consider the PMDL with jRnj = 1 (and with limn?1jRnj = 1) for cgx = 0 to
be ‘accurate enough’. An even more potent reason for not allowing zero reference group velocites is that such a choice will
lead to ill-posedness of the ABC in transient modeling of acoustic waves (see [41]). Moreover, for the case of untilted anisot-
ropy and isotropy, (43) cannot be satisfied by any local ABC. This discussion thus eliminates (43) and entirely excludes the
choice of zero reference group velocities. This leaves us with a choice of positive or negative reference group velocities in
trying to satisfy (44).

Consider the choice of negative reference group velocities in ensuring (44). Without loss of generality let c1 < 0. As
cgx ? �c1(>0), we have jr1j?1. Unless there is another factor rj or �rj in (45) that tends to zero as fast or faster than jr1j?1,
the reflection coefficient will grow without bound (jRnj?1) and hence (44) cannot be satisfied for cgx in the neighborhood
of �c1. It is however possible to prevent the unbounded growth in jRnj by a careful choice of other reference group velocities.
For example if c2 = �c1, then jr2j? 0 as cgx ? �c1. The reflection coefficient need not necessarily tend to 1 now because
jr1r2j = 1 and this prevents the unbounded growth of jRnj due to jr1j?1. However, such a choice of parameters results in
a loss of factors in the expression for Rn; the factor r2 is ‘lost’ in canceling out the effect of r1 and does not contribute to reduc-
ing the reflection coefficient. In many cases this reduces the efficiency of a PMDL i.e. we might need a larger n to ensure a
sufficiently small Rn. Hence, we will not consider negative reference group velocities unless they are necessary for meeting
the accuracy criterion (44).

Fortunately, it is possible to satisfy (44) with only positive reference group velocities. Noting the product form of (45), the
accuracy criterion (44) is satisfied if each term in the product is less than one. Thus, a sufficient condition for (44) is:
jRnjj < 1 8 cgx > 0: ð47Þ
It is obvious from (45) that a choice of positive reference group velocities (cj > 0 and �cj > 0) is sufficient for (47) to be satis-
fied. Hence a choice of cj > 0 and �cj > 0 is also sufficient for (44). Using (38), this sufficient condition becomes
Arxj þ ðC=2Þ
�Crxj �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4B� ð4AB� C2Þr2

xj

q
2B

0@ 1A > 0: ð48Þ
Using (10), (48) can be reduced to,
ð4AB� C2Þrxj > C
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4B� ð4AB� C2Þr2

xj

q���� ����: ð49Þ
Noting that 4AB � C2 > 0 (see (10)), (49) can be reduced to,
rxj >
C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4B� ð4AB� C2Þr2

xj

q��� ���
ð4AB� C2Þ

; ð50Þ
which, on squaring and rearranging results in,
rxj >
Cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Að4AB� C2Þ
q
�������

�������: ð51Þ
The condition (51) has a simple geometric interpretation that is shown in Fig. 8 (left).
The above discussion (from (48) onward) implicitly assumed that cj; �cj 2 R which is not true when

rxj > 2
ffiffiffi
B
p

=ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4AB� C2

p
Þ. However, for rxj > 2

ffiffiffi
B
p

=ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4AB� C2

p
Þ, (47) is satisfied if ReðcjÞ ¼ Reð�cjÞ > 0, which in turn requires:



Fig. 8. Left: Geometric interpretation of the sufficient condition for accuracy. The parameters of PMDL should be chosen above the horizontal line that
defines the ‘cusp’ of the ellipse. Right: Corner PMDL with parameters (layer lengths) consistent with the two edge PMDLs.
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for cj; �cj R R : ReðcjÞ ¼ Reð�cjÞ ¼
ð4AB� C2Þ

4B
rxj > 0() rxj > 0: ð52Þ
The condition (51) encompasses (52) and (51) is hence a sufficient condition for satisfying the accuracy criterion (47). Note
that (51) results in jRnj = 1 for cgx = 0; for reasons stated before, we consider this to be acceptable.
4.3. Relation between stiffness and group velocity

It should be noted that being able to express the reflection coefficient in terms of group velocities is key to the derivation
of the simple accuracy condition (51). Not every ABC produces a reflection coefficient of this kind. A straightforward imple-
mentation of Higdon’s multidirectional ABCs or an implementation of complex coordinate stretching in the direction of
unboundedness (traditional PML) will result in a reflection coefficient of the form,
eRn ¼
Yn

j¼1

rx � rxj

rx þ rxj

� �
¼
Yn

j¼1

cpxj � cpx

cpxj þ cpx

� �
; ð53Þ
where cpxj
¼ 1=rxj are the reference phase velocities. For isotropic and untilted anisotropic media (C = 0), cgx = A/cpx from

(12); approximating phase velocities is the same as approximating group velocities and a choice of rxj > 0 (or cpxj > 0) is en-
ough to ensure accuracy in this case. An ABC that results in a reflection coefficient of the form (53) is however not too useful
for the case of tilted anisotropy because, as discussed in Section 2.4, there exist modes with positive phase velocities but with
negative group velocities (and vice versa). In this case, a choice of positive reference phase velocities cpxj > 0 is no guarantee
that the ABC will accurately absorb modes with positive group velocities. While Engquist and Majda’s rational approxima-
tion of the square root operator, when applied to anisotropic media, will lead to the group velocity form of the reflection
coefficient (39), it is not of much practical interest because of its implementation being restricted to lower orders. Moreover,
since their ABC was never developed for cases with phase and group velocities of differing signs, it is not apparent that their
rational approximation was developed with the explicit goal of capturing positive group velocities.

The n-layer PMDL approximates the stiffness (18) by a rational function instead of approximating the horizontal slowness
directly. It can be seen from (18) and (12) that the stiffness for propagating wave modes is in fact related to their group veloc-
ity as K = �ix cgx. Hence, approximating stiffness is the same as approximating group velocities. It is therefore not surprising
that the form of the rational approximation (25) with (21) and (22) leads us to a reflection coefficient that is expressible
purely in terms of group velocities (39). As noted before, this form of (39) is key to the derivation of the simple accuracy con-
dition (51).
4.4. Corners

The PMDL formulation is known to be applicable to convex polygonal corners [20,21]. Analogous to the description of
corner PML in [11], a corner PMDL acts as an ABC for each of the edge PMDLs. Since the parameters of the corner PMDL
are consistent with those of the edge PMDLs, as shown in Fig. 8 (right), it will absorb the corresponding ‘outgoing’ waves
provided the parameters of both of the edge PMDLs satisfy (51).
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5. Numerical examples

We consider a 2D model problem with a square interior consisting of a tilted anisotropic acoustic medium that is modeled
by regular square bilinear finite elements. The exterior is represented by ABCs on all four edges/corners. For a given fre-

quency x, the characteristic wavenumber is k = x/c, with c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=a2 þ 1=b2

q
being the velocity (see (6)). Using a conservative

element size, h = 0.05/x, we get the number of elements per characteristic wavelength Ne = 2pc/xh � 120. Using the mate-
rial parameters a = 1,b = 2,b = 30� in (7), the accuracy condition (51) for PMDL in the x direction is rxj > 0.72. For PMDL in the
y direction we have a = 1, b = 2, b = 60� and hence (51) becomes ryj > 0.98. For simplicity, in all experiments we assume
ryj = 1.5rxj and rx1 = rx2 = � � � = rxn, thus reducing the number the PMDL parameters to just one. The excitation consists of
a normalized Gaussian given by ðr

ffiffiffiffiffiffiffi
2p
p

Þ�1e�ð0:5ðr=rÞ
2Þ for r 6 5r and zero elsewhere. Here r is the radial distance from the

Gaussian center and r = 1.5h. The Gaussian center is positioned at the center of the lower left quarter. For comparison,
the exact solution for tilted anisotropic medium is obtained by appropriately transforming in space, the Green’s function
of an isotropic medium (the Hankel function). The interior is modeled by a mesh of 600 � 600 finite elements with two PMDL
layers forming the exterior on all four edges. The frequency is assumed to be x = 1000.

The accuracy obtained for different values of the PMDL parameters rxj can be visually inferred from Fig. 9 and is numer-
ically quantified in Fig. 10. The relative error is calculated as kuPMDL � uexactk2=kuexactk2 and expressed as a percentage. The
least accurate results are obtained when rxj is below the cusp i.e. when the parameters violate the accuracy criterion
(51), which in the present case is rxj > 0.72. Note that we have used ryj = 1.5rxj and thus the accuracy criterion is violated
in the y direction too. The inaccuracies of violating (51) are dramatic in the first two snapshots of Fig. 9.

Fig. 10 shows that the minimum relative error obtained with a 2-layer PMDL is around 1%. It should be noted that this
includes the interior discretization error which can be reduced with a reduction in the interior element size; experiments
with finer interior discretizations have confirmed this. Since we wish to compare the relative effect of changing PMDL
parameters, our observations are valid as long as the interior discretization remains constant.

The relative error is also seen to increase when the parameters are chosen above the peak of the ellipse. This is because of
the fact that for such parameters there will be no interpolation points on the ellipse and since we wish to capture a part of
Fig. 9. Interior solution for a 2 layer PMDL exterior with various PMDL parameters. The first three have parameters under the cusp and thus violate the
accuracy criterion.

Fig. 10. Relative error in norm for a 2 layer PMDL with various parameters. The lines demarcating the cusp of the slowness ellipse and its peak are shown.



Fig. 11. Slowness diagrams for 2 layer PMDL approximation with parameters chosen below the cusp, between the cusp and peak and above the peak.

Fig. 12. Relative error in PMDL approximation with increasing number of PMDL layers for various PMDL parameters that satisfy the accuracy criterion.
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the ellipse (the positive group velocity part) we should expect some loss in accuracy in this case. The slowness diagrams pre-
sented in Fig. 11 clearly demonstrate this. The case of rxj = 0.4 violates (51) with the parameter being below the cusp and the
capturing of the negative group velocity branch is evident. The remaining three cases with rxj = 1.0, 2.4, 4.0 all lie above the
cusp and hence approximate the positive group velocity branch only. However rxj = 1.0 also lies under the peak and hence
interpolates the ellipse at rx = 1.0. The last two cases lie beyond the peak and hence have no points of interpolation with the
exact curve.

It is expected that increasing the number of PMDL layers should reduce the error in approximation as long as (51) is sat-
isfied. The relative error in approximation with increasing number of PMDL layers for various PMDL parameters that satisfy
(51) is shown in Fig. 12 and it depicts a clear worsening of the approximation with increasing number of PMDL layers espe-
cially for lower PMDL parameters. This counter intuitive behavior can be explained by studying the slowness diagrams
shown in Fig. 13 for a large number of PMDL layers. Since the parameters of PMDL were chosen to be real, they approximate
the propagating part of the slowness curve (the tilted ellipse) without capturing the evanescent part (ry beyond the ellipse).
As the number of layers increase, the PMDL approximates the propagating part of the slowness curve with rational polyno-
mials of increasing degrees. While this results in a better approximation inside the ellipse, just outside the ellipse, however,
Fig. 13. Slowness diagrams for large number of PMDL layers (6) and (10) with different PMDL parameters.
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it invariably leads to the very highly oscillatory behavior typical of high degree rational functions due to the increasing num-
ber of alternating poles and zeros. This indicates that there are large errors in the evanescent spectrum, leading to worsening
of the solution quantified in Fig. 12. The interior solution corresponding to the slowness diagrams of Fig. 13 are shown in
Fig. 14 and clearly show the desired solution being polluted near the boundary (rxj = 1.0,n = 6) and being completely over-
shadowed throughout the interior (rxj = 1.0,n = 10).

Notice however, that using parameters far above the cusp, rxj = 4.0� 0.72 for instance, will result in a bad approximation
for smaller number of layers, but a much better approximation for larger number of layers according to Fig. 12. This can be
explained by comparing the last diagram in Fig. 11 (rxj = 4.0,n = 2) with the second and fourth diagrams in Fig. 13
(rxj = 4.0,n = 6, 10). It is also interesting to note that the error does not reduce beyond 1% (approximately) irrespective of
the number of PMDL layers used with any parameter satisfying the accuracy criterion (51). With the knowledge that this
minimum error reduces with finer interior discretization (not shown here), we can conclude that (a) this 1% error is mainly
due to the interior discretization and (b) just 2–3 PMDL layers are sufficient to reduce the error to the interior discretization
error as long as the parameters of PMDL satisfy the accuracy criterion.

We conclude this section with two methods for handling the errors due to the presence of clustered zeros and poles for
large number of PMDL layers. Just like PMDL layers with real parameters capture propagating waves, PMDL layers with imag-
inary or complex parameters have been shown to capture decaying waves (with purely imaginary and complex wavenum-
bers) [22,38]. These are termed the padding layers (purely imaginary parameters) and complex PMDL (complex
parameters). The performance of PMDL with varying number of padding layers is shown in Fig. 15. The parameters of the
padding layers are chosen as those that smoothen the highly oscillatory part of the slowness curves the most. Similar results
are obtained for PMDL parameters chosen much above the cusp rxj� 0.72. The slowness diagrams with padding and com-
plex layers and their visual snapshots are shown in Fig. 16, 17, and 18. The smoothening of the real part of the slowness
approximation is evident in Fig. 16; this leads to a better approximation of propagating waves. The imaginary part of the
approximation is shown in Fig. 17; the presence of the non-zero imaginary part in the approximation models decaying waves
appropriately. The corresponding snapshots can be seen in Fig. 18.
Fig. 14. Interior solution for large number of PMDL layers (n = 6, 10) with PMDL parameters chosen above and near the cusp (rxj = 1.0) and above and far
away from the cusp (rxj = 4.0).

Fig. 15. Performance of PMDL when used along with padding layers.



Fig. 16. Real part of the slowness approximation for 6 layer PMDL with rxj = 1.2 and with padding layers and complex PMDL layers.

Fig. 17. Imaginary part of the slowness approximation for 6 layer PMDL with rxj = 1.2 and with padding layers and complex PMDL layers.

Fig. 18. Interior solution for 6 layer PMDL with rxj = 1.2 and with padding layers and complex PMDL layers.
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6. Summary and Conclusions

A sufficient condition for the accuracy of PMDL ABC for the time harmonic modeling of scalar waves in an anisotropic
acoustic medium is presented. In deriving this accuracy criterion, the PMDL formulation is shown to naturally overcome
challenges posed by the existence of wave modes with differing phase and group velocity signs without the need of an explicit
coordinate transformation; the absence of such transformations make the current study more amenable to extensions involv-
ing layered media. The distinctive property of PMDL, namely approximation of half-space stiffness instead of the wavenum-
ber, is central to the ability of PMDL to capture the correct group velocities even when the group and phase velocities are not
aligned in the same direction. This is because the group velocity and stiffness are related (at least in this case) and PMDL
approximates the stiffness. We hypothesize that the link between group velocity and stiffness extends to general vector sys-
tems and that this link can be used to ensure accuracy of PMDL in general anisotropic media.

PMDL is known to possess several advantages over other local ABCs and is thus used for the present study. The PMDL
derivation is applicable to any second order hyperbolic system and to general anisotropic, heterogeneous exteriors, with het-
erogeneity confined to directions orthogonal to the direction of unboundedness. PMDL is equally applicable to propagating
and evanescent waves and can be implemented to an arbitrarily high degree of accuracy without discretization errors. PMDL
is also linked to PML and show promise in inheriting their versatility.

The present study is confined to propagating scalar wave modes in homogeneous (though anisotropic) exteriors. Since
none of these restrictions are due to actual limitations of the PMDL formulation, further studies will (hopefully) eliminate
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all of them. Establishing links between group velocity and stiffness for complicated media and taking evanescent waves into
account are of immediate concern. Further developments need to address more complex vector wave equations related to
anisotropic electromagnetism and elastodynamics.
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